

Edição 2020

Categoria: **Benjamins** (5° e 6° and de escolaridade)

Tempo: 45 minutos

Resolve tantos problemas quanto possível em 45 minutos.

Não é esperado que consigas resolver todos!

RESPONDE APENAS NA FOLHA DE RESPOSTAS. É UMA FOLHA ÚNICA, À PARTE, QUE DEVERÁS IDENTIFICAR COM O TEU NOME.

OS ENUNCIADOS E FOLHAS DE RASCUNHO
DEVEM SER OBRIGATORIAMENTE RECOLHIDOS NO FINAL DA PROVA.

Conteúdo

	Página
Preâmbulo	2
Organização	2
Estrutura da Prova	
Sobre os Problemas	3
1 — Calendário	4
2 – Vistas	5
3 — Os Animais dos Castores	6
4 — Caça ao Ursinho de Peluche	7
5 — Desenhar um Robô	8
6 - Torres de Blocos	
7 — Visualização de Dados	10
8 — Os Desenhos do Marco	
9 — Estrelas e Luas	12
10 — A Caixa Mais Pesada	13
11 — Cadeiras	14
12 — Escolhe um Caminho	15
13 — O Canguru Saltitão	16
14 — Criando Números	
15 — Código de Grelha	18

Preâmbulo

O *Bebras - Castor Informático* é uma iniciativa internacional destinada a promover o pensamento computacional e a Informática (Ciência de Computadores). Foi desenhado para motivar alunos de todo o mundo e de todas as idades mesmo que não tenham experiência prévia.

Tem já uma longa história e foi iniciado em 2004 pela Prof. Valentina Dagienė, da Universidade de Vilnius, na Lituânia. O seu nome original vem dessa origem - 'bebras' significa 'castor' em lituano. A comunidade internacional adotou esse nome, porque os castores buscam a perfeição no seu dia-a-dia e são conhecidos por serem muito trabalhadores e inteligentes.

O que é o Pensamento Computacional?

O pensamento computacional é um conjunto de técnicas de resolução de problemas que envolve a maneira de expressar um problema e a sua solução de maneira a que um computador (seja um humano ou máquina) a possa executar. É muito mais do que simplesmente saber programar e envolve vários níveis de abstração e as capacidades mentais que são necessárias para não só desenhar programas e aplicações, mas também saber explicar e interpretar um mundo como um sistema complexo de processos de informação.

A expressão 'pensamento computacional' tornou-se conhecida em 2006 e pode ser vista como a nova literacia do século XXI. O desafio do Bebras promove precisamente este tipo de habilidades e conceitos informáticos como a capacidade de partir um problema complexo em problemas mais simples, o desenho de algoritmos, o reconhecimento de padrões ou a capacidade de generalizar e abstrair.

Organização

O *Bebras - Castor Informático* é organizado pelo Departamento de Ciência de Computadores (DCC/FCUP) da Faculdade de Ciências da Universidade do Porto (FCUP), juntamente com o TreeTree2.

TREETREE2

O Departamento de Ciência de Computadores da Faculdade de Ciências da Universidade do Porto é o ponto de contacto português junto da organização internacional. Para além de ser uma instituição de referência no ensino e na investigação, o DCC/FCUP apoia este tipo de iniciativas desde há muitos anos, sendo também um dos principais organizadores das Olimpíadas Nacionais de Informática.

O TreeTree2 é uma organização sem fins lucrativos que pretende cumprir o potencial criativo e intelectual dos jovens. Desenvolve vários programas de divulgação e ensino da ciência e engenharia. Noutras iniciativas, e na promoção e desenvolvimento do pensamento computacional em particular, conta com o apoio do Instituto Superior Técnico e financiamento da Fundação Calouste Gulbenkian.

Estrutura da Prova

• Existe apenas uma fase, a qual é constituída por uma prova escrita com questões de escolha múltipla ou de resposta aberta. Existem perguntas de três níveis de dificuldade diferentes, cuja pontuação é da seguinte forma:

Dificuldade	Correto	Incorreto	Não respondido
A - fácil	+6 pontos	-2 pontos	0 pontos
B - média	+9 pontos	-3 pontos	0 pontos
C - difícil	+12 pontos	-4 pontos	0 pontos

- A prova é individual e tem a duração de 45 minutos.
- Os alunos respondem unicamente na folha de respostas, independente do enunciado da prova, a
 qual será fornecida conjuntamente com a prova. As respostas deverão ser depois preenchidas numa
 folha de cálculo que será fornecida ao professor responsável, que a deverá posteriormente enviar
 para a organização.
- Os enunciados da prova devem ser recolhidos no final do concurso. Os alunos poderão consultar mais tarde novamente os enunciados quando estes foram divulgados publicamente.
- As possíveis folhas de rascunho entregues aos alunos também devem ser recolhidas no final do concurso.
- A gestão de situações de fraude ou de comportamento impróprio durante a realização do concurso ficará a cargo da Escola que deverá gerir a situação de acordo com as suas regras internas.

Sobre os Problemas

Os problemas aqui colocados foram criados pela comunidade internacional da iniciativa Bebras e estão protegidos por uma licença da Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional.

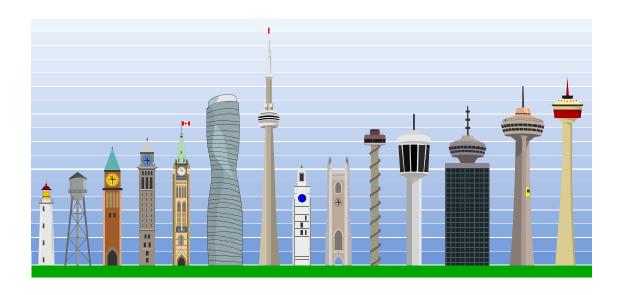
Os nomes dos autores dos problemas serão discriminados na versão final a divulgar no sítio oficial do Bebras - Castor Informático. Os problemas foram escolhidos, traduzidos e adaptados pela organização portuguesa. Para a edição portuguesa deste ano foram usados problemas com autores originários dos seguintes países:

Dificuldade: **fácil** | Origem:

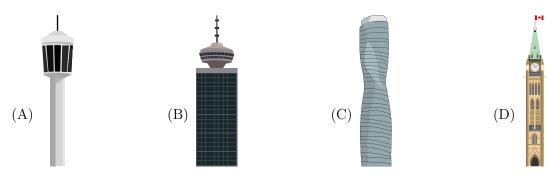
1 – Calendário

O dia antes de há três dias atrás foi o dia anterior a Domingo.

Pergunta


De acordo com as informações anteriores, que dia vai ser amanhã?

- (A) Segunda-Feira
- (B) Domingo
- (C) Quinta-Feira
- (D) Quarta-Feira


2 – Vistas

Uma cidade tem 14 torres como se mostra abaixo:

Pergunta

Se as torres fossem ordenadas da mais baixa para a mais alta, qual das torres apareceria em 10^{0} lugar na lista?

Dificuldade: **fácil** | Origem:

3 – Os Animais dos Castores

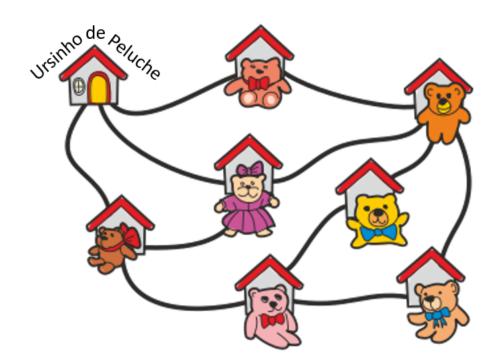
A Anna, o Ben, e a Lisa vivem na Aldeia dos Castores. Cada um vive numa casa de cor diferente e cada um deles tem um animal de estimação diferente. Sabe-se que:

- uma das casas é azul;
- a Anna vive na casa amarela;
- o Ben vive na casa ao lado da Lisa;
- o gato vive na casa vermelha;
- a Lisa tem um papagaio.

Pergunta

Quem tem um cão? A seguinte tabela pode ajudar-te a chegar à solução:

Casa	1	2	3
Cor			
Nome			
Animal			



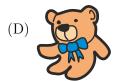
- (A) Anna
- (B) Ben
- (C) Lisa

Dificuldade: **fácil** | Origem: \blacksquare

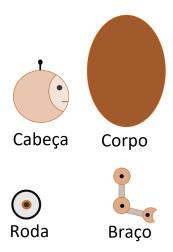
4 – Caça ao Ursinho de Peluche

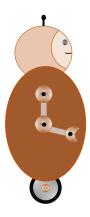
Uma família de castores saiu para uma caça ao Ursinho de Peluche. Saíram de casa (marcada como "Ursinho de Peluche") e andaram apenas sobre os caminhos, voltando a casa no fim. Pelo caminho, foram tirando fotografias aos Ursinhos de Peluche que viram. Abaixo está um mapa da sua aldeia.

Eles viram 4 Ursinhos de Peluche e abaixo estão as fotografias que eles tiraram, mas esqueceram-se de um!


Pergunta

De que Ursinho de Peluche é que eles se esqueceram?

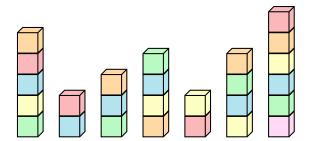



Dificuldade: **fácil** | Origem:

5 – Desenhar um Robô

A Jelena adora desenhar no computador. Hoje está a desenhar um robô. Primeiro, desenhou as seguintes partes do robô:

Depois disso, juntou-as numa só imagem, como se pode ver abaixo:


Pergunta

Se cada nova parte do robô é colocada por cima das anteriores, por qual ordem foram colocadas as peças?

- (A) Cabeça, roda, corpo, braço.
- (B) Roda, corpo, cabeça, braço.
- (C) Corpo, roda, braço, cabeça.
- (D) Roda, cabeça, braço, corpo.

6 – Torres de Blocos

Sam, o pequeno castor, está a brincar com os seus blocos. Construiu sete bonitas torres, cada uma feita com blocos do mesmo tamanho:

Sam tem disponíveis mais blocos além dos colocados nas torres e tem duas maneiras de mudar a altura de uma torre: adicionar blocos novos ao topo ou remover blocos existentes do topo. Cada adição ou remoção de blocos conta como uma operação.

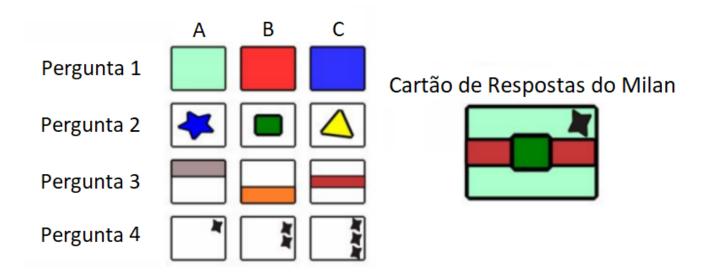
Por exemplo: para ele mudar a altura da torre da esquerda para 2, precisa de 3 operações (remover 3 blocos), e para a mudar para 7, precisa de 2 operações (adicionar 2 blocos).

O Sam quer que todas as torres sejam da mesma altura, e quer fazer o menor número de operações possível.

Pergunta

No total, qual é o menor número de operações que o Sam precisa de fazer para tornar todas as torres da mesma altura?

- (A) 6
- (B) 7
- (C) 8
- (D) 9
- (E) 10
- (F) 11

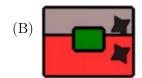


Visualização de Dados

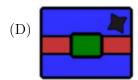
O Milan e a Maya responderam a um questionário com 4 perguntas. As respostas do Milan foram:

- Pergunta 1: Resposta A
- Pergunta 2: Resposta B
- Pergunta 3: Resposta C
- Pergunta 4: Resposta A

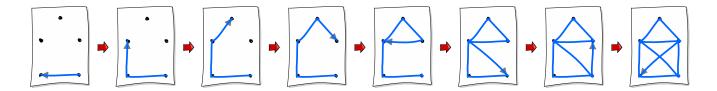
De acordo com as regras apresentadas abaixo, o Milan recebeu um cartão com as suas respostas:


Pergunta

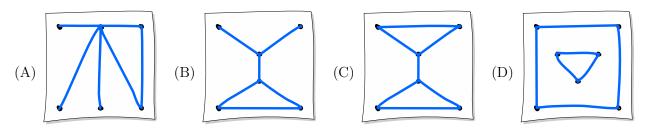
As respostas da Maya foram:


- Pergunta 1: Resposta B
- Pergunta 2: Resposta B
- Pergunta 3: Resposta A
- Pergunta 4: Resposta B

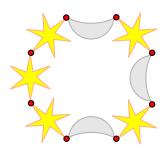
Que cartão representa as respostas da Maya?



Dificuldade: **média** | Origem:


8 – Os Desenhos do Marco

O Marco quer fazer desenhos sem levantar a caneta do papel. Ele cria as imagens desenhando linhas de um ponto até ao próximo. No entanto, nunca pode desenhar o mesmo segmento de linha mais do que uma vez. Por exemplo, ele pode desenhar uma imagem de uma casa num movimento contínuo usando a seguinte sequência de passos:


Pergunta

Qual das seguintes figuras também podes desenhar desta maneira?

9 – Estrelas e Luas

A Mary quer uma pulseira como a da imagem abaixo.

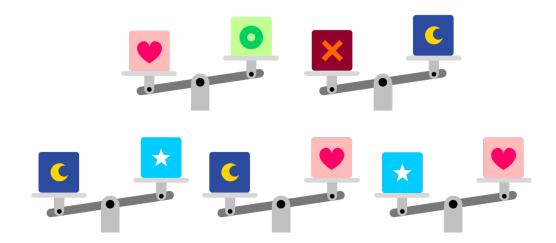
Então, ela dá ao John as seguintes instruções:

- Pega numa estrela 🗡 e numa lua e liga-as uma à outra.
- Repete o passo anterior mais duas vezes.
- Pega nas três partes já feitas e liga-as numa corrente única.
- Junta duas estrelas a uma das pontas da corrente e liga as duas pontas da corrente para fazer uma pulseira.

Infelizmente, se o John não tiver uma fotografia da pulseira que a Mary quer, pode acabar por fazer uma pulseira muito diferente, mesmo que siga as instruções todas corretamente.

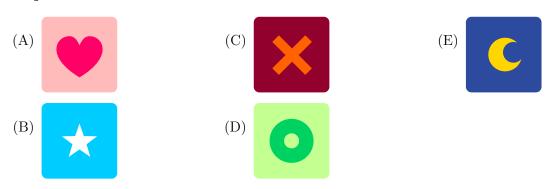
Pergunta

Três das quatro pulseiras mostradas abaixo poderiam ter sido feitas pelo John. Qual das pulseiras **não** pode ser construída seguindo as regras da Mary?


Dificuldade: **média** | Origem:

10 – A Caixa Mais Pesada

Há cinco caixas, cada uma com uma forma diferente nela desenhada. Usando uma balança de braços, podem comparar-se os pesos das várias caixas. Por exemplo,



Foram feitas cinco comparações:

Pergunta

Qual é a caixa mais pesada?

Bebras - Castor Informático: Edição 2020

Dificuldade: **difícil** | Origem: 😸

11 – Cadeiras

Os castores querem jogar um jogo e então sentaram-se em 6 cadeiras mantidas numa fila. Foram-lhes dados números de 1 até 6. Antes de começar o jogo, um número entre 1 e 4 é tirado à sorte. Em cada ronda, todos os castores mudam de cadeira para a direita um número de posições igual ao número escolhido, e os castores no fim da fila mudam-se para o início. Depois do movimento, o castor mais à direita é eliminado do jogo e a última cadeira é tirada. O castor que sobrar no fim é o vencedor.

Então, se o número 2 for tirado, o castor 6 é o vencedor, como podes ver abaixo:

Depois da primeira ronda:
(Sai o castor 4)

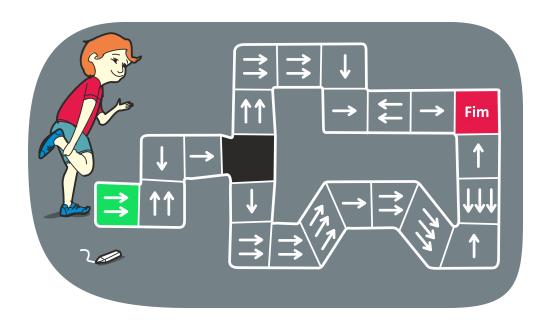
Depois da segunda ronda:
(Sai o castor 1)

Depois da terceira ronda:
(Sai o castor 3)

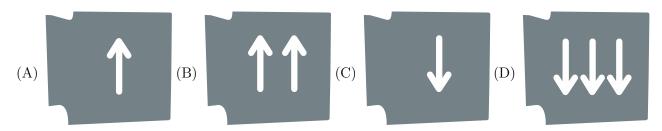
Depois da quarta ronda:
(Sai o castor 5)

Depois da quinta ronda:
(Sai o castor 2, sobra o 6 que é o vencedor)

Pergunta

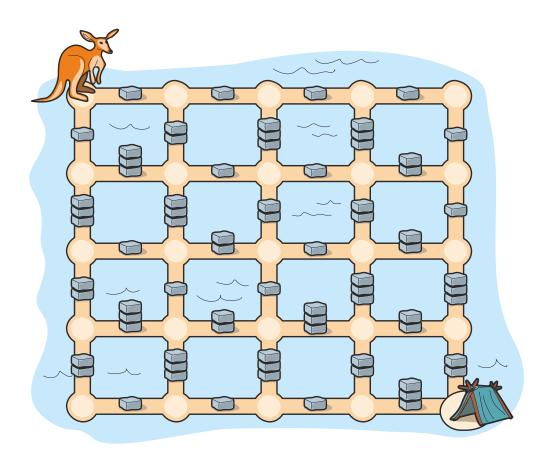

Qual será o castor vencedor se for tirado o número 3?

- (A) 1
- (B) 2 (E) 5
- (C) 3 (F) 6


12 – Escolhe um Caminho

O Ben desenhou um jogo de saltos no pátio. Ele começa na primeira casa (verde). Depois repete: da casa onde está, ele salta um número de vezes igual ao número de setas desenhadas nessa casa, na direção das setas.

Pergunta


 $O\ que\ \'e\ que\ o\ Ben\ precisa\ de\ desenhar\ na\ casa\ vazia\ para\ conseguir\ chegar\ ao\ fim?$

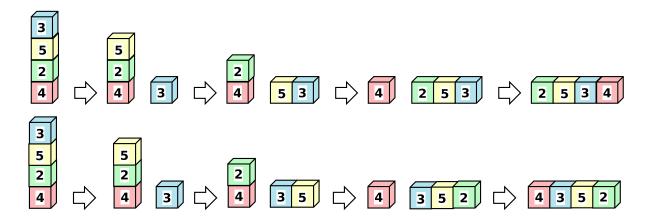
13 – O Canguru Saltitão

Uma canguru vai aos saltos até casa. Ela apenas pode saltar ao longo dos caminhos e apenas pode fazer saltos verticais (cima \updownarrow baixo) ou horizontais (esquerda \leftrightarrow direita) e só se não houver mais de dois blocos empilhados no caminho.

A canguru quer chegar a casa o mais rapidamente possível.

Pergunta

Qual é o menor número de saltos que a canguru tem que fazer para chegar a casa?


- (A) 13
- (B) 14
- (C) 15
- (D) 16

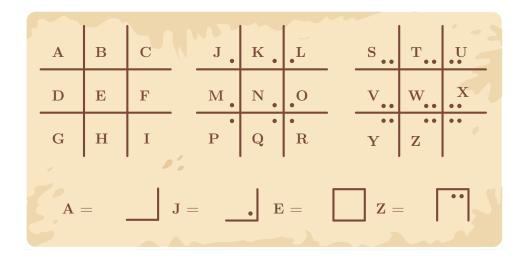
Dificuldade: **difícil** | Origem: 👩

14 – Criando Números

A Olívia está a brincar com blocos. Cada bloco tem um único algarismo. Ela adora fazer uma grande torre e depois retirar os blocos um por um, desde o topo, para formar um número. De cada vez que ela tira um bloco, pode colocá-lo à direita ou à esquerda do número que está a formar. As seguintes figuras mostram uma torre de 4 blocos e dois possíveis números que se podem formar com ela (2534 e 4352):

Pergunta

Escreve um número inteiro de seis algarismos que responda a questão: qual é o **menor** número que se pode formar com a torre da figura abaixo?



Dificuldade: **difícil** | Origem:

15 – Código de Grelha

O castor encontrou uma explicação para um velho código secreto chamado Código de Grelha. Este código usa três diagramas com nove células cada. A última célula de todas está em branco, significando um espaço entre palavras. As outras células contêm todas uma letra cada uma. O primeiro diagrama não tem pontos, o segundo tem um ponto em todas as células e o terceiro tem dois pontos em todas as células.

Repara que os contornos de cada célula, juntamente com o número de pontos nela, determinam unicamente uma letra.

Na figura podes ver um exemplo dos códigos para "A", "J", "E"e "Z".

- O "A"não tem pontos, e tem duas bordas (uma à direita, outra no fundo).
- O "J"tem um ponto, e tem duas bordas (uma à direita, outra no fundo).
- O "E"não tem pontos e tem todas as quatro bordas (topo, fundo, esquerda, e direita).
- O "Z" tem dois pontos, e tem três bordas (topo, esquerda, e direita)

Pergunta

Que palavra está escrita aqui usando o Código de Grelha? Na tua resposta, escreve todas as letras em maiúscula.

